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(a) —e

(b)

12 such pairs

\

12 such
pairs
4 such pairs 8 such pairs
Figure 1.6.
(a) The potential energy of this arrangement of
nine point charges is given by Eq. (1.14).
(b) Four types of pairs are involved in the sum.

Example (Charges in a cube) What is the potential energy of an arrange-
ment of eight negative charges on the corners of a cube of side b, with a positive
charge in the center of the cube, as in Fig. 1.6(a)? Suppose each negative charge
is an electron with charge —e, while the central particle carries a double positive
charge, 2e.

Solution  Figure 1.6(b) shows that there are four different types of pairs. One
type involves the center charge, while the other three involve the various edges
and diagonals of the cube. Summing over all pairs yields

U— 1 g (—262) L 12 &2 L 12 &2 4 &2 1 4.32¢2
Cdmeg \ (V3/2)b b V2b V3b) 4mey b
(1.14)

The energy is positive, indicating that work had to be done on the system to
assemble it. That work could, of course, be recovered if we let the charges move
apart, exerting forces on some external body or bodies. Or if the electrons were
simply to fly apart from this configuration, the rotal kinetic energy of all the
particles would become equal to U. This would be true whether they came apart
simultaneously and symmetrically, or were released one at a time in any order.
Here we see the power of this simple notion of the total potential energy of the
system. Think what the problem would be like if we had to compute the resultant
vector force on every particle at every stage of assembly of the configuration!
In this example, to be sure, the geometrical symmetry would simplify that task;
even so, it would be more complicated than the simple calculation above.

One way of writing the instruction for the sum over pairs is this:

R W
EEID I
2],:1 [y 47‘[60 Tjk

(1.15)

The double-sum notation, Zjv: 1 Zk#, says: take j=1 and sum over
k=2,3,4,...,N; then take j=2 and sum over k=1,3,4,...,N; and so
on, through j=N. Clearly this includes every pair twice, and to correct
for that we put in front the factor 1/2.

1.6 Electrical energy in a crystal lattice

These ideas have an important application in the physics of crystals. We
know that an ionic crystal like sodium chloride can be described, to a
very good approximation, as an arrangement of positive ions (Na™) and
negative ions (C17) alternating in a regular three-dimensional array or
lattice. In sodium chloride the arrangement is that shown in Fig. 1.7(a).
Of course the ions are not point charges, but they are nearly spherical
distributions of charge and therefore (as we shall prove in Section 1.11)
the electrical forces they exert on one another are the same as if each ion
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were replaced by an equivalent point charge at its center. We show this
electrically equivalent system in Fig. 1.7(b). The electrostatic potential
energy of the lattice of charges plays an important role in the explanation
of the stability and cohesion of the ionic crystal. Let us see if we can
estimate its magnitude.

‘We seem to be faced at once with a sum that is enormous, if not dou-
bly infinite; any macroscopic crystal contains 1020 atoms at least. Will
the sum converge? Now what we hope to find is the potential energy per
unit volume or mass of crystal. We confidently expect this to be inde-
pendent of the size of the crystal, based on the general argument that
one end of a macroscopic crystal can have little influence on the other.
Two grams of sodium chloride ought to have twice the potential energy
of one gram, and the shape should not be important so long as the sur-
face atoms are a small fraction of the total number of atoms. We would
be wrong in this expectation if the crystal were made out of ions of one
sign only. Then, 1 g of crystal would carry an enormous electric charge,
and putting two such crystals together to make a 2 g crystal would take
a fantastic amount of energy. (You might estimate how much!) The sit-
uation is saved by the fact that the crystal structure is an alternation of
equal and opposite charges, so that any macroscopic bit of crystal is very
nearly neutral.

To evaluate the potential energy we first observe that every positive
ion is in a position equivalent to that of every other positive ion. Further-
more, although it is perhaps not immediately obvious from Fig. 1.7, the
arrangement of positive ions around a negative ion is exactly the same as
the arrangement of negative ions around a positive ion, and so on. Hence
we may take one ion as a center, it matters not which kind, sum over its
interactions with all the others, and simply multiply by the total number
of ions of both kinds. This reduces the double sum in Eq. (1.15) to a sin-
gle sum and a factor N; we must still apply the factor 1/2 to compensate
for including each pair twice. That is, the energy of a sodium chloride
lattice composed of a total of N ions is

11 g
U= =N . 1.16
2 ; 47‘[60 Ik ( )

Taking the positive ion at the center as in Fig. 1.7(b), our sum runs over
all its neighbors near and far. The leading terms start out as follows:

11 (6ez+1262 8e2+ > wm
2" 4re a V2a 3a . '

The first term comes from the 6 nearest chlorine ions, at distance a, the
second from the 12 sodium ions on the cube edges, and so on. It is clear,
incidentally, that this series does not converge absolutely; if we were so

U=

(b)

Figure 1.7.

A portion of a sodium chloride crystal, with the
ions Na* and CI~ shown in about the right
relative proportions (a), and replaced by
equivalent point charges (b).
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foolish as to try to sum all the positive terms first, that sum would diverge.
To evaluate such a sum, we should arrange it so that as we proceed
outward, including ever more distant ions, we include them in groups
that represent nearly neutral shells of material. Then if the sum is bro-
ken off, the more remote ions that have been neglected will be such an
even mixture of positive and negative charges that we can be confident
their contribution would have been small. This is a crude way to describe
what is actually a somewhat more delicate computational problem. The
numerical evaluation of such a series is easily accomplished with a com-
puter. The answer in this example happens to be

_ —0.8738Ne?

1.18
drega (118)

Here N, the number of ions, is twice the number of NaCl molecules.

The negative sign shows that work would have to be done to take
the crystal apart into ions. In other words, the electrical energy helps to
explain the cohesion of the crystal. If this were the whole story, however,
the crystal would collapse, for the potential energy of the charge distri-
bution is obviously lowered by shrinking all the distances. We meet here
again the familiar dilemma of classical — that is, nonquantum — physics.
No system of stationary particles can be in stable equilibrium, according
to classical laws, under the action of electrical forces alone; we will give
a proof of this fact in Section 2.12. Does this make our analysis useless?
Not at all. Remarkably, and happily, in the quantum physics of crystals
the electrical potential energy can still be given meaning, and can be
computed very much in the way we have learned here.

1.7 The electric field

Suppose we have some arrangement of charges, ¢q1, ¢2, ..., gn, fixed in
space, and we are interested not in the forces they exert on one another,
but only in their effect on some other charge ¢ that might be brought
into their vicinity. We know how to calculate the resultant force on this
charge, given its position which we may specify by the coordinates x, y,
z. The force on the charge ¢y is

N N
1 q04,¥o;
F = —_ 1.19
47‘[60 Z r2. ( )
j=1 0

where ro; is the vector from the jth charge in the system to the point
(x,¥,2). The force is proportional to go, so if we divide out gg we obtain
a vector quantity that depends only on the structure of our original system
of charges, q1,...,qn, and on the position of the point (x,y,z). We call
this vector function of x, y, z the electric field arising from the g1, ..., qn
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and use the symbol E for it. The charges ¢, ..., gy we call sources of q,=-1C P
the field. We may take as the definition of the electric field E of a charge Tor —_ g o
distribution, at the point (x,y, z), ”
T g (x.y.2) \
— i10) A
E(x.y.0) = 71— Z e (1.20) 28,
= Y AN

The force on some other charge ¢ at (x, y, z) is then

F =¢E (1.21)

Figure 1.8 illustrates the vector addition of the field of a point charge
of 2 C to the field of a point charge of —1 C, at a particular point in space.
In the SI system of units, electric field strength is expressed in newtons
per unit charge, that is, newtons/coulomb. In Gaussian units, with the esu
as the unit of charge and the dyne as the unit of force, the electric field
strength is expressed in dynes/esu.

After the introduction of the electric potential in Chapter 2, we shall
have another, and completely equivalent, way of expressing the unit of
electric field strength; namely, volts/meter in SI units and statvolts/
centimeter in Gaussian units.

So far we have nothing really new. The electric field is merely another
way of describing the system of charges; it does so by giving the force
per unit charge, in magnitude and direction, that an exploring charge go
would experience at any point. We have to be a little careful with that
interpretation. Unless the source charges are really immovable, the intro-
duction of some finite charge gp may cause the source charges to shift
their positions, so that the field itself, as defined by Eq. (1.20), is dif-
ferent. That is why we assumed fixed charges to begin our discussion.
People sometimes define the field by requiring go to be an “infinitesi-
mal” test charge, letting E be the limit of F/qq as go — 0. Any flavor of
rigor this may impart is illusory. Remember that in the real world we have
never observed a charge smaller than e! Actually, if we take Eq. (1.20) as
our definition of E, without reference to a test charge, no problem arises
and the sources need not be fixed. If the introduction of a new charge
causes a shift in the source charges, then it has indeed brought about a
change in the electric field, and if we want to predict the force on the new
charge, we must use the new electric field in computing it.

Perhaps you still want to ask, what is an electric field? Is it some-
thing real, or is it merely a name for a factor in an equation that has to be
multiplied by something else to give the numerical value of the force we
measure in an experiment? Two observations may be useful here. First,
since it works, it doesn’t make any difference. That is not a frivolous
answer, but a serious one. Second, the fact that the electric field vector

q,=+2C

Figure 1.8.
The field at a point is the vector sum of the fields
of each of the charges in the system.
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Figure 1.9.

(a) Field of a charge ¢; = 3. (b) Field of a
charge ¢ = —1. Both representations are

necessarily crude and only roughly quantitative.

at a point in space is all we need know to predict the force that will act
on any charge at that point is by no means trivial. It might have been
otherwise! If no experiments had ever been done, we could imagine that,
in two different situations in which unit charges experience equal force,
test charges of strength 2 units might experience unequal forces, depend-
ing on the nature of the other charges in the system. If that were true, the
field description wouldn’t work. The electric field attaches to every point
in a system a local property, in this sense: if we know E in some small
neighborhood, we know, without further inquiry, what will happen to
any charges in that neighborhood. We do not need to ask what produced
the field.

To visualize an electric field, you need to associate a vector, that is, a
magnitude and direction, with every point in space. We shall use various
schemes in this book, none of them wholly satisfactory, to depict vector
fields.

It is hard to draw in two dimensions a picture of a vector function
in three-dimensional space. We can indicate the magnitude and direction
of E at various points by drawing little arrows near those points, mak-
ing the arrows longer where E is larger.” Using this scheme, we show in
Fig. 1.9(a) the field of an isolated point charge of 3 units and in Fig. 1.9(b)
the field of a point charge of —1 unit. These pictures admittedly add noth-
ing whatsoever to our understanding of the field of an isolated charge;
anyone can imagine a simple radial inverse-square field without the help
of a picture. We show them in order to combine (side by side) the two
fields in Fig. 1.10, which indicates in the same manner the field of two
such charges separated by a distance a. All that Fig. 1.10 can show is the
field in a plane containing the charges. To get a full three-dimensional
representation, one must imagine the figure rotated around the symmetry
axis. In Fig. 1.10 there is one point in space where E is zero. As an
exercise, you can quickly figure out where this point lies. Notice also
that toward the edge of the picture the field points more or less radially
outward all around. One can see that at a very large distance from the
charges the field will look very much like the field from a positive point
charge. This is to be expected because the separation of the charges can-
not make very much difference for points far away, and a point charge
of 2 units is just what we would have left if we superimposed our two
sources at one spot.

Another way to depict a vector field is to draw field lines. These are
simply curves whose tangent, at any point, lies in the direction of the
field at that point. Such curves will be smooth and continuous except at
singularities such as point charges, or points like the one in the example
of Fig. 1.10 where the field is zero. A field line plot does not directly give
7 Sucha representation is rather clumsy at best. It is hard to indicate the point in space to

which a particular vector applies, and the range of magnitudes of E is usually so large
that it is impracticable to make the lengths of the arrows proportional to E.
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the magnitude of the field, although we shall see that, in a general way,
the field lines converge as we approach a region of strong field and spread
apart as we approach a region of weak field. In Fig. 1.11 are drawn some
field lines for the same arrangement of charges as in Fig. 1.10, a positive
charge of 3 units and a negative charge of 1 unit. Again, we are restricted

Figure 1.10.

The field in the vicinity of two charges, g; = +3,
g2 = —1, is the superposition of the fields in
Figs. 1.9(a) and (b).

Figure 1.11.
Some field lines in the electric field around two
charges, ¢ = +3, ¢ = —1.
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pi',y'.7")

(xy.2)

Figure 1.12.

Each element of the charge distribution
o(x',y,7) makes a contribution to the electric
field E at the point (x, y,z). The total field at this
point is the sum of all such contributions; see
Eq. (1.22).

by the nature of paper and ink to a two-dimensional section through a
three-dimensional bundle of curves.

1.8 Charge distributions

This is as good a place as any to generalize from point charges to contin-
uous charge distributions. A volume distribution of charge is described
by a scalar charge-density function p, which is a function of position,
with the dimensions charge/volume. That is, p times a volume element
gives the amount of charge contained in that volume element. The same
symbol is often used for mass per unit volume, but in this book we shall
always give charge per unit volume first call on the symbol p. If we
write p as a function of the coordinates x, y, z, then p(x,y,z) dxdydz is
the charge contained in the little box, of volume dx dy dz, located at the
point (x,y, ).

On an atomic scale, of course, the charge density varies enormously
from point to point; even so, it proves to be a useful concept in that
domain. However, we shall use it mainly when we are dealing with large-
scale systems, so large that a volume element dv = dx dy dz can be quite
small relative to the size of our system, although still large enough to
contain many atoms or elementary charges. As we have remarked before,
we face a similar problem in defining the ordinary mass density of a
substance.

If the source of the electric field is to be a continuous charge distri-
bution rather than point charges, we merely replace the sum in Eq. (1.20)
with the appropriate integral. The integral gives the electric field at
(x,y,2), which is produced by charges at other points (x',y’,z):

Ex,y,2) =

1 /,/,/"d/d/d/
/p(xy Qrdx dy dz. (1.22)

4meg r?

This is a volume integral. Holding (x,y, z) fixed, we let the variables of
integration, x’, y’, and 7/, range over all space containing charge, thus
summing up the contributions of all the bits of charge. The unit vector
I points from (x',y’,7') to (x,y,z) — unless we want to put a minus sign
before the integral, in which case we may reverse the direction of t. It is
always hard to keep signs straight. Let’s remember that the electric field
points away from a positive source (Fig. 1.12).

Example (Field due to a hemisphere) A solid hemisphere has radius R
and uniform charge density p. Find the electric field at the center.

Solution  Our strategy will be to slice the hemisphere into rings around the
symmetry axis. We will find the electric field due to each ring, and then integrate
over the rings to obtain the field due to the entire hemisphere. We will work with
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polar coordinates (or, equivalently, spherical coordinates), which are much more
suitable than Cartesian coordinates in this setup.

The cross section of a ring is (essentially) a little rectangle with side lengths
dr and rd6, as shown in Fig. 1.13. The cross-sectional area is thus rdrd6. The
radius of the ring is rsin @, so the volume is (r dr df)(2zrsin6). The charge in
the ring is therefore p (27 2 sin 6 dr do). Equivalently, we can obtain this result
by using the standard spherical-coordinate volume element, 2 sin @ dr do do,
and then integrating over ¢ to obtain the factor of 2.

Consider a tiny piece of the ring, with charge dg. This piece creates an elec-
tric field at the center of the hemisphere that points diagonally upward (if p is
positive) with magnitude dg/4m e 2. However, only the vertical component sur-
vives, because the horizontal component cancels with the horizontal component
from the diametrically opposite charge dg on the ring. The vertical component
involves a factor of cos . When we integrate over the whole ring, the dg simply
integrates to the total charge we found above. The (vertical) electric field due to
a given ring is therefore

pQrr?sin6 dr do) cosg — PSinOcos6 drdo

dEy, =
Y drreqr? 2¢)

(1.23)

Integrating over r and 0 to obtain the field due to the entire hemisphere gives

E /R/‘”/zpsinQCOSerdQ P /Rd /‘”/2 10 cos 8 8
— Lttt r sin cos
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(1.24)

Note that the radius r canceled in Eq. (1.23). For given values of 6, d6, and dr, the
volume of a ring grows like 72, and this exactly cancels the 72 in the denominator
in Coulomb’s law.

REMARK As explained above, the electric field due to the hemisphere is verti-
cal. This fact also follows from considerations of symmetry. We will make many
symmetry arguments throughout this book, so let us be explicit here about how
the reasoning proceeds. Assume (in search of a contradiction) that the electric
field due to the hemisphere is not vertical. It must then point off at some angle,
as shown in Fig. 1.14(a). Let’s say that the E vector lies above a given dashed line
painted on the hemisphere. If we rotate the system by, say, 180° around the sym-
metry axis, the field now points in the direction shown in Fig. 1.14(b), because
it must still pass over the dashed line. But we have exactly the same hemisphere
after the rotation, so the field must still point upward to the right. We conclude
that the field due to the hemisphere points both upward to the left and upward to
the right. This is a contradiction. The only way to avoid this contradiction is for
the field to point along the symmetry axis (possibly in the negative direction),
because in that case it doesn’t change under the rotation.

In the neighborhood of a true point charge the electric field grows
infinite like 1/72 as we approach the point. It makes no sense to talk about
the field at the point charge. As our ultimate physical sources of field are

Figure 1.13.
Cross section of a thin ring. The hemisphere
may be considered to be built up from rings.

(a)

(b)

Figure 1.14.
The symmetry argument that explains why E
must be vertical.
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(a)

(b)

Figure 1.15.

(a) A closed surface in a vector field is divided
(b) into small elements of area. (c) Each
element of area is represented by an outward
vector.

not, we believe, infinite concentrations of charge in zero volume, but
instead finite structures, we simply ignore the mathematical singularities
implied by our point-charge language and rule out of bounds the interior
of our elementary sources. A continuous charge distribution p(x,y’, 7')
that is nowhere infinite gives no trouble at all. Equation (1.22) can be
used to find the field at any point within the distribution. The integrand
doesn’t blow up at » = 0 because the volume element in the numerator
equals 7 sin ¢ d¢ df dr in spherical coordinates, and the > here can-
cels the r2 in the denominator in Eq. (1.22). That is to say, so long as p
remains finite, the field will remain finite everywhere, even in the interior
or on the boundary of a charge distribution.

1.9 Flux

The relation between the electric field and its sources can be expressed
in a remarkably simple way, one that we shall find very useful. For this
we need to define a quantity called flux.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.15 shows such
a surface, the field being suggested by a few field lines. Now divide the
whole surface into little patches that are so small that over any one patch
the surface is practically flat and the vector field does not change appre-
ciably from one part of a patch to another. In other words, don’t let the
balloon be too crinkly, and don’t let its surface pass right through a sin-
gularity® of the field such as a point charge. The area of a patch has a
certain magnitude in square meters, and a patch defines a unique direc-
tion — the outward-pointing normal to its surface. (Since the surface is
closed, you can tell its inside from its outside; there is no ambiguity.) Let
this magnitude and direction be represented by a vector. Then for every
patch into which the surface has been divided, such as patch number j,
we have a vector a; giving its area and orientation. The steps we have just
taken are pictured in Figs. 1.15(b) and (c). Note that the vector a; does
not depend at all on the shape of the patch; it doesn’t matter how we have
divided up the surface, as long as the patches are small enough.

Let E; be the electric field vector at the location of patch number
J. The scalar product E; - a; is a number. We call this number the flux
through that bit of surface. To understand the origin of the name, imagine
a vector function that represents the velocity of motion in a fluid —say in a
river, where the velocity varies from one place to another but is constant
in time at any one position. Denote this vector field by v, measured in

8 By a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but also any place where the field changes magnitude or
direction discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some
finite area.
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meters/second. Then, if a is the oriented area in square meters of a frame
lowered into the water, v - a is the rate of flow of water through the frame
in cubic meters per second (Fig. 1.16). The cos @ factor in the standard
expression for the dot product correctly picks out the component of v
along the direction of a, or equivalently the component of a along the
direction of v. We must emphasize that our definition of flux is applicable
to any vector function, whatever physical variable it may represent.
Now let us add up the flux through all the patches to get the flux
through the entire surface, a scalar quantity which we shall denote by ®:

®=>E-a; (1.25)

all j

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. (1.25) to a surface integral:

o= E-da (1.26)
entire
surface

A surface integral of any vector function F, over a surface S, means just
this: divide S into small patches, each represented by a vector outward, of
magnitude equal to the patch area; at every patch, take the scalar product
of the patch area vector and the local F; sum all these products, and the
limit of this sum, as the patches shrink, is the surface integral. Do not
be alarmed by the prospect of having to perform such a calculation for
an awkwardly shaped surface like the one in Fig. 1.15. The surprising
property we are about to demonstrate makes that unnecessary!

1.10 Gauss’s law

Take the simplest case imaginable; suppose the field is that of a single
isolated positive point charge ¢, and the surface is a sphere of radius r
centered on the point charge (Fig. 1.17). What is the flux @ through this
surface? The answer is easy because the magnitude of E at every point
on the surface is g/4mweor? and its direction is the same as that of the
outward normal at that point. So we have

® = E - (total arca) = =4 (127)
4 €0

s

Flux = va cos 60° = 0.5va

Figure 1.16.

The flux through the frame of area ais v - a,
where v is the velocity of the fluid. The flux is the
volume of fluid passing through the frame, per
unit time.

Figure 1.17.
In the field E of a point charge ¢, what is the
outward flux over a sphere surrounding ¢?
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Figure 1.18.

Showing that the flux through any closed
surface around ¢ is the same as the flux through
the sphere.

The flux is independent of the size of the sphere. Here for the first time
we see the benefit of including the factor of 1/4m in Coulomb’s law
in Eq. (1.4). Without this factor, we would have an uncanceled factor
of 4 in Eq. (1.27) and therefore also, eventually, in one of Maxwell’s
equations. Indeed, in Gaussian units Eq. (1.27) takes the form of
d =4ngq.

Now imagine a second surface, or balloon, enclosing the first, but
not spherical, as in Fig. 1.18. We claim that the total flux through this
surface is the same as that through the sphere. To see this, look at a cone,
radiating from ¢, that cuts a small patch a out of the sphere and continues
on to the outer surface, where it cuts out a patch A at a distance R from
the point charge. The area of the patch A is larger than that of the patch
a by two factors: first, by the ratio of the distance squared (R/r)?; and
second, owing to its inclination, by the factor 1/ cos 8. The angle 6 is the
angle between the outward normal and the radial direction (see Fig. 1.18).
The electric field in that neighborhood is reduced from its magnitude on
the sphere by the factor (r/R)? and is still radially directed. Letting Er)
be the field at the outer patch and E, be the field at the sphere, we have

flux through outer patch = E(g) - A = Eg)A cos 6,
flux through inner patch = E(,) - a = E(a. (1.28)

Using the above facts concerning the magnitude of E) and the area of
A, the flux through the outer patch can be written as

) R\ 1
ER)yAcost = E(r)<1_2) a(;) o0 cost = Epya, (1.29)

which equals the flux through the inner patch.

Now every patch on the outer surface can in this way be put into
correspondence with part of the spherical surface, so the total flux must
be the same through the two surfaces. That is, the flux through the new
surface must be just g/€p. But this was a surface of arbitrary shape and
size.” We conclude: the flux of the electric field through any surface
enclosing a point charge g is g/€p. As a corollary we can say that the
total flux through a closed surface is zero if the charge lies outside the
surface. We leave the proof of this to the reader, along with Fig. 1.19 as
a hint of one possible line of argument.

There is a way of looking at all this that makes the result seem obvi-
ous. Imagine at g a source that emits particles — such as bullets or photons
—in all directions at a steady rate. Clearly the flux of particles through a
window of unit area will fall off with the inverse square of the window’s
distance from ¢g. Hence we can draw an analogy between the electric field
strength £ and the intensity of particle flow in bullets per unit area per

9 Tobe sure, we had the second surface enclosing the sphere, but it didn’t have to, really.
Besides, the sphere can be taken as small as we please.
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unit time. It is pretty obvious that the flux of bullets through any surface
completely surrounding ¢ is independent of the size and shape of that
surface, for it is just the total number emitted per unit time. Correspond-
ingly, the flux of E through the closed surface must be independent of
size and shape. The common feature responsible for this is the inverse-
square behavior of the intensity.

The situation is now ripe for superposition! Any electric field is the
sum of the fields of its individual sources. This property was expressed
in our statement, Eq. (1.19), of Coulomb’s law. Clearly flux is an addi-
tive quantity in the same sense, for if we have a number of sources,
q1.92, - - - ,qn, the fields of which, if each were present alone, would be
Ei,Es, ..., Ey, then the flux ® through some surface S in the actual field
can be written

@:/E~da=/(E1+E2+~~+EN)~da. (1.30)
N N

We have just learned that fs E; - da equals g;/e if the charge ¢;
is inside S and equals zero otherwise. So every charge ¢ inside the sur-
face contributes exactly g/¢ to the surface integral of Eq. (1.30) and all
charges outside contribute nothing. We have arrived at Gauss’s law.

The flux of the electric field E through any closed surface, that is,
the integral [ E - da over the surface, equals 1/¢( times the total
charge enclosed by the surface:

1 1
fE da=— Zq,' = —f,odv (Gauss’s law)  (1.31)
€0 - €0

We call the statement in the box a law because it is equivalent to
Coulomb’s law and it could serve equally well as the basic law of elec-
trostatic interactions, after charge and field have been defined. Gauss’s
law and Coulomb’s law are not two independent physical laws, but the
same law expressed in different ways.!” In Gaussian units, the 1/€ in
Gauss’s law is replaced with 47.

Looking back over our proof, we see that it hinged on the inverse-
square nature of the interaction and of course on the additivity of
interactions, or superposition. Thus the theorem is applicable to any
inverse-square field in physics, for instance to the gravitational field.

10 There is one difference, inconsequential here, but relevant to our later study of the
fields of moving charges. Gauss’s law is obeyed by a wider class of fields than those
represented by the electrostatic field. In particular, a field that is inverse-square in r but
not spherically symmetrical can satisfy Gauss’s law. In other words, Gauss’s law alone
does not imply the symmetry of the field of a point source which is implicit in
Coulomb’s law.

(b)

Figure 1.19.
To show that the flux through the closed surface
in (a) is zero, you can make use of (b).



26

Electrostatics: charges and fields

Figure 1.20.

A charge distribution with spherical symmetry.

Figure 1.21.
The electric field of a spherical charge
distribution.

It is easy to see that Gauss’s law would not hold if the law of force
were, say, inverse-cube. For in that case the flux of electric field from
a point charge ¢ through a sphere of radius R centered on the charge
would be

d):/E-da: T azp?=-L (1.32)
4 eoR3 €oR
By making the sphere large enough we could make the flux through it as
small as we pleased, while the total charge inside remained constant.
This remarkable theorem extends our knowledge in two ways. First,
it reveals a connection between the field and its sources that is the con-
verse of Coulomb’s law. Coulomb’s law tells us how to derive the elec-
tric field if the charges are given; with Gauss’s law we can determine how
much charge is in any region if the field is known. Second, the mathemat-
ical relation here demonstrated is a powerful analytic tool; it can make
complicated problems easy, as we shall see in the following examples. In
Sections 1.11-1.13 we use Gauss’s law to calculate the electric field due
to various nicely shaped objects. In all of these examples the symmetry
of the object will play a critical role.

1.11 Field of a spherical charge distribution

We can use Gauss’s law to find the electric field of a spherically sym-
metrical distribution of charge, that is, a distribution in which the charge
density p depends only on the radius from a central point. Figure 1.20
depicts a cross section through some such distribution. Here the charge
density is high at the center, and is zero beyond rg. What is the electric
field at some point such as P outside the distribution, or P, inside it
(Fig. 1.21)? If we could proceed only from Coulomb’s law, we should
have to carry out an integration that would sum the electric field vectors
at P arising from each elementary volume in the charge distribution.
Let’s try a different approach that exploits both the symmetry of the sys-
tem and Gauss’s law.

Because of the spherical symmetry, the electric field at any point
must be radially directed — no other direction is unique. Likewise, the
field magnitude E must be the same at all points on a spherical surface S
of radius ry, for all such points are equivalent. Call this field magnitude
E;. The flux through this surface S is therefore simply 47 r%El, and by
Gauss’s law this must be equal to 1/€g times the charge enclosed by the
surface. That is, 471r%E1 = (1/€p) - (charge inside S1) or

charge inside S

1: 2

1.33
dweory ( )

Comparing this with the field of a point charge, we see that the field
at all points on Sy is the same as if all the charge within S1 were con-
centrated at the center. The same statement applies to a sphere drawn
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inside the charge distribution. The field at any point on S is the same as
if all charge within S, were at the center, and all charge outside S, absent.
Evidently the field inside a “hollow” spherical charge distribution is zero
(Fig. 1.22). Problem 1.17 gives an alternative derivation of this fact.

Example (Field inside and outside a uniform sphere) A spherical
charge distribution has a density p that is constant from r=0 out to r=R
and is zero beyond. What is the electric field for all values of r, both less than
and greater than R?

Solution For r > R, the field is the same as if all of the charge were concen-
trated at the center of the sphere. Since the volume of the sphere is 47R3/3, the
field is therefore radial and has magnitude

@nR’/3)p _ pR’

E(r) = =
N 4 eqr? 3epr?

r > R). (1.34)

For r < R, the charge outside radius r effectively contributes nothing to the field,
while the charge inside radius r acts as if it were concentrated at the center. The
volume inside radius r is 4713 /3, so the field inside the given sphere is radial
and has magnitude

@nr’/3p _ pr

E(r) =
) dmegr? K1)

(r<R). (1.35)

In terms of the total charge Q = (47'rR3 /3)p, this can be written as Qr/47r60R3.
The field increases linearly with r inside the sphere; the r growth of the effec-
tive charge outweighs the 1/ r2 effect from the increasing distance. And the field
decreases like 1 /r2 outside the sphere. A plot of E(r) is shown in Fig. 1.23. Note
that E(r) is continuous at » = R, where it takes on the value pR/3¢(. As we will
see in Section 1.13, field discontinuities are created by surface charge densities,
and there are no surface charges in this system. The field goes to zero at the cen-
ter, so it is continuous there also. How should the density vary with r so that the
magnitude E(r) is uniform inside the sphere? That is the subject of Exercise 1.68.

The same argument applied to the gravitational field would tell us
that the earth, assuming it is spherically symmetrical in its mass distribu-
tion, attracts outside bodies as if its mass were concentrated at the center.
That is a rather familiar statement. Anyone who is inclined to think the
principle expresses an obvious property of the center of mass must be
reminded that the theorem is not even true, in general, for other shapes.
A perfect cube of uniform density does not attract external bodies as if
its mass were concentrated at its geometrical center.

Newton didn’t consider the theorem obvious. He needed it as the
keystone of his demonstration that the moon in its orbit around the earth
and a falling body on the earth are responding to similar forces. The delay
of nearly 20 years in the publication of Newton’s theory of gravitation

Figure 1.22.

~

N
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The field is zero inside a spherical shell of

charge.

PR
3¢,

E(r)

~r

~1/r?

Figure 1.23.

The electric field due to a uniform sphere of

charge.
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Figure 1.24.

(a) The field at P is the vector sum of
contributions from each element of the line
charge. (b) Detail of (a).

was apparently due, in part at least, to the trouble he had in proving this
theorem to his satisfaction. The proof he eventually devised and pub-
lished in the Principia in 1686 (Book I, Section XII, Theorem XXXI)
is a marvel of ingenuity in which, roughly speaking, a tricky volume
integration is effected without the aid of the integral calculus as we
know it. The proof is a good bit longer than our whole preceding dis-
cussion of Gauss’s law, and more intricately reasoned. You see, with all
his mathematical resourcefulness and originality, Newton lacked Gauss’s
law — a relation that, once it has been shown to us, seems so obvious as
to be almost trivial.

1.12 Field of a line charge
A long, straight, charged wire, if we neglect its thickness, can be charac-
terized by the amount of charge it carries per unit length. Let A, measured
in coulombs/meter, denote this linear charge density. What is the elec-
tric field of such a line charge, assumed infinitely long and with constant
linear charge density A? We’ll do the problem in two ways, first by an
integration starting from Coulomb’s law, and then by using Gauss’s law.

To evaluate the field at the point P, shown in Fig. 1.24, we must add
up the contributions from all segments of the line charge, one of which
is indicated as a segment of length dx. The charge dg on this element is
given by dg = A dx. Having oriented our x axis along the line charge, we
may as well let the y axis pass through P, which is a distance r from the
nearest point on the line. It is a good idea to take advantage of symmetry
at the outset. Obviously the electric field at P must point in the y direc-
tion, so that Ex and E; are both zero. The contribution of the charge dg
to the y component of the electric field at P is

dEy = - 4 coso = 2L cosh, (136)
megR 4megR

where 6 is the angle the electric field of dg makes with the y direction.
The total y component is then

% A cos 9
= | dE, = 1.37
Ey / Y / 47 eoR2 (1.37)
It is convenient to use @ as the variable of integration. Since Figs. 1.24(a)
and (b) tell us that R = r/cosf and dx = Rdf/cos 6, we have dx =
rdf/ cos? 6. (This expression for dx comes up often. It also follows from

x = rtanf = dx = rd(tan@) = rd6f/ cos”6.) Eliminating dx and R
from the integral in Eq. (1.37), in favor of 6, we obtain

7/2 ) cos B do A /2 A
E, = = cosfdf = ——  (1.38)
—x2 Ameor dreor J_zp 2megr

We see that the field of an infinitely long, uniformly dense line charge is
proportional to the reciprocal of the distance from the line. Its direction
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is of course radially outward if the line carries a positive charge, inward
if negative.

Gauss’s law leads directly to the same result. Surround a segment of
the line charge with a closed circular cylinder of length L and radius r,
as in Fig. 1.25, and consider the flux through this surface. As we have
already noted, symmetry guarantees that the field is radial, so the flux
through the ends of the “tin can” is zero. The flux through the cylindrical
surface is simply the area, 2w rL, times E,, the field at the surface. On the
other hand, the charge enclosed by the surface is just AL, so Gauss’s law
gives us 2nrL)E, = AL/€¢g or

A
" 27T€()r’

(1.39)

in agreement with Eq. (1.38).

1.13 Field of an infinite flat sheet of charge
Electric charge distributed smoothly in a thin sheet is called a surface
charge distribution. Consider a flat sheet, infinite in extent, with the con-
stant surface charge density o. The electric field on either side of the
sheet, whatever its magnitude may turn out to be, must surely point per-
pendicular to the plane of the sheet; there is no other unique direction
in the system. Also, because of symmetry, the field must have the same
magnitude and the opposite direction at two points P and P’ equidistant
from the sheet on opposite sides. With these facts established, Gauss’s
law gives us at once the field intensity, as follows: draw a cylinder, as in
Fig. 1.26 (actually, any shape with uniform cross section will work fine),
with P on one side and P’ on the other, of cross-sectional area A. The
outward flux is found only at the ends, so that if Ep denotes the magni-
tude of the field at P, and Ep the magnitude at P’, the outward flux is
AEp 4+ AEp = 2AEp. The charge enclosed is 0 A, so Gauss’s law gives
2AEp = 0A/¢€q, or
o
Ep=—. (1.40)
2¢€0

We see that the field strength is independent of r, the distance from the
sheet. Equation (1.40) could have been derived more laboriously by cal-
culating the vector sum of the contributions to the field at P from all the
little elements of charge in the sheet.

In the more general case where there are other charges in the vicinity,
the field need not be perpendicular to the sheet, or symmetric on either
side of it. Consider a very squat Gaussian surface, with P and P’ infinites-
imally close to the sheet, instead of the elongated surface in Fig. 1.26.
We can then ignore the negligible flux through the cylindrical “side” of
the pillbox, so the above reasoning gives E| p + E| p = o/€p, where
the “_L” denotes the component perpendicular to the sheet. If you want

Figure 1.25.
Using Gauss’s law to find the field of a line
charge.

Figure 1.26.
Using Gauss’s law to find the field of an infinite
flat sheet of charge.
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Figure 1.27.
A spherical surface with uniform charge
density 0.

to write this in terms of vectors, it becomes E| p — E| p = (0/€p)hh,
where 1 is the unit vector perpendicular to the sheet, in the direction of
P. In other words, the discontinuity in E; across the sheet is given by

AE, = Zh. (1.41)
€0
Only the normal component is discontinuous; the parallel component is
continuous across the sheet. So we can just as well replace the AE; in
Eq. (1.41) with AE. This result is also valid for any finite-sized sheet,
because from up close the sheet looks essentially like an infinite plane,
at least as far as the normal component is concerned.

The field of an infinitely long line charge, we found, varies inversely
as the distance from the line, while the field of an infinite sheet has the
same strength at all distances. These are simple consequences of the fact
that the field of a point charge varies as the inverse square of the distance.
If that doesn’t yet seem compellingly obvious, look at it this way: roughly
speaking, the part of the line charge that is mainly responsible for the
field at P in Fig. 1.24 is the near part — the charge within a distance of
order of magnitude r. If we lump all this together and forget the rest, we
have a concentrated charge of magnitude g ~ Ar, which ought to produce
a field proportional to ¢/r2, or A/r. In the case of the sheet, the amount
of charge that is “effective,” in this sense, increases proportionally to 72
as we go out from the sheet, which just offsets the 1/r2 decrease in the
field from any given element of charge.

1.14 The force on a layer of charge

The sphere in Fig. 1.27 has a charge distributed over its surface with
the uniform density o, in C/m?. Inside the sphere, as we have already
learned, the electric field of such a charge distribution is zero. Outside
the sphere the field is Q/4meqr?, where Q is the total charge on the
sphere, equal to 47 r(%o. So just outside the surface of the sphere the field
strength is

o
Ejust outside = — - (1.42)
€0

Compare this with Eq. (1.40) and Fig. 1.26. In both cases Gauss’s law is
obeyed: the change in the normal component of E, from one side of the
layer to the other, is equal to o /€g, in accordance with Eq. (1.41).

What is the electrical force experienced by the charges that make up
this distribution? The question may seem puzzling at first because the
field E arises from these very charges. What we must think about is the
force on some small element of charge dg, such as a small patch of area
dA with charge dg = o dA. Consider, separately, the force on dg due to all
the other charges in the distribution, and the force on the patch due to the
charges within the patch itself. This latter force is surely zero. Coulomb
repulsion between charges within the patch is just another example of



